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Introduction

Low thrust propulsion systems typically have their greatest benefit for high energy

missions or missions with large post-launch maneuver requirements. Missions which have

been examined include main belt asteroid rendezvous, comet rendezvous, outer planet and

Mercury orbiters, Pluto flyby and solar probe missions.] Low thrust mission design

software used to determine these trajectories is based on two distinct formulations of the

optimal control problem: the indirect and direct methods. The traditional approach

(indirect) is to use the calculus of variations to obtain first-order necessary conditions on

the states and costates.  These methods are referred to as indirect because an extremal  to the

cost functional is obtained by satisfying the first-order necessary conditions, Indirect

methods typically result in soIving two-point boundary value problems that require

integration of the state and costate differential equations. In contrast, direct methods are

conceptually different in that no explicit integration takes place. Rather, a finite

approxitnation  is sought using finite difference methods. Direct methods often transform

the optimal control problem into a nonlinear programming problem (NLP). The cost

functional is then directly minimized by varying discrete values for the states and controls.

A direct method based on differential inclusion concepts has been developed and

successfully used to compute low thrust trajectories. This new approach removes explicit

control dependence from the problem thereby reducing the dimension of the parameter

space for the NLP. Also when compared to other direct methods, fewer nonlinear

constraints are required to represent the dynamics of the problem.

Problem Statement

The equation of motion for a spacecraft subject to a single gravitational source is

given through the rocket equation:

r=g(r)+~il=g(r)+r (1)

where r is the position vector, g(r) the gravitational acceleration vector, T the engine

thrust, 0 a unit vector in the thrust direction, r the thrust acceleration vector and m the mass

of the vehicle. The model used for the spacecraft’s propulsion system, whether constant

specific impulse (csi) or variable specific impulse (vsi), directly affects the relationship

between control effort and propellant consumption, Assuming a constant power source P,
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such as nuclear electric, the equations that govern the change in mass for both csi and vsi

systems are given below. The variable c is the propellant’s exhaust velocity.

csi case: m T=——c (2)

vsi case: (3)

For convenience, a state vector x will be defined. For the csi case, x’l” = [ r v y]
Pwhere v is the velocity vector and y = in (m). For the vsi case, XT = [ r v a] where u = ~.

The state rates for the two systems can then be obtained through equations (l)-(3).

csi case:

f=v (4)

v = g(r)+ T exp (–y) O (5)

1’
=_ T exp (-y)

c (6)

vsi case:

i-=v (7)

v=g(r)+r (8)
rTr(Y=T (9)

The set of differential equations given in equations (4)-(6) can be written as

x = fC$i(x,Tfi)  and equations (7)-(9) as x = fv~i(x,~.  To determine an optimal trajectory,

controls (Tti or r) must be chosen to satisfy any boundary conditions on the states while

minimizing an objective function.

Recently, it has been shown that many optimal control problems can be described

by functional differential inclusions.2-5  Differential inclusions represent the dynamics of a

problem in terms of attainable sets rather than differential equations. Seywald5 was first to

show how differential inclusion could be used to solve one-dimensional trajectory
optimization problems. Examination of equations (4)-(6) and (7)-(9) show that ~ and &

contain information about the control magnitude but not the control direction. To remove

explicit dependence of the differential equations on the control, the v equations are

manipulated to produce a scalar equation of the form:

csi case: (t- g(r))’” (t- g(r)) = ~2c2 (lo)

2
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vsi case: (V - g(r))’l’ ($ - g(r)) = 2 & (11)

This manipulation has replaced the control variables with state rates. using a finite

difference approach, the total maneuver time is divided into N segments. Define the end

points of each segment as the left and right nodes denoted by subscripts 1 and r and assume

equal segment lengths t~. If a first-order approximation is used for the derivative across

each segment, then the state rates may be represented as:

Substituting the position derivative approximation given in equation

(12)

(12) into equations (4)

and (7) and evaluating the equation at the segment center yields 3N linear equality

constraints. Assuming fixed time tf maneuvers, ts = t@l.

(Vr+os =()r~–rl–  ~ (13)

The scalar constraint on the velocity state rate evaluated at the segment center becomes N

nonlinear equality constraints.

csi case: (v,--v1-t5g(rJ)’’(vvrt5g(rc))))  -2c2(7,-%)2 = O (14)

vsi case: (vr-v,-t,gtr~j’(vr-v,-tsg(rc))  -2tJ~r-d = o (15)

rl + rr
where rC = —–2

The mass related variables evolve subject to the following N nonlinear and linear inequality

constraints. Note that this method does not need to assume a control structure for the csi

case. The structure (burn-coast-burn, bum) is contained in they values.

csi case: ( )
7,+ 71 (16)0 S –(Y, – Yl) exp ~ c<Tt5

csi case: 02yr-y] (17)

vsi case: o s c x r - a * s - (18)
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Results

A variety of trajectories have been solved using the above direct method. However,

due to space limitations only two trajectories will be shown. The first example is taken

from reference [6] and is a two-dimensional gravity-free, csi case t’hat involves a maximum

velocity transfer to a rectilinear path. The problem statement is to transfer a particle using a

thrust magnitude T with a thrust direction angle ~(t) from rest at the origin to a path parallel

to the x-axis a distance h away in a given time tr arriving with zero velocity in the y

direction and maximum velocity in the x direction. Figures 1-4 display some characteristics

of the optimal trajectory. The following conditions were placed on the transfer. m(to)=l,

T=l, t~l, c=l, N=1O and h=O.1. The entire mass of the particle was assumed to be

propellant. Cases were also run with a limit on the final mass and, the optimal solution was
to use all available propellant. Figure 4 contains two curves for the control angle @ As

described in [6], indirect methods may be employed to show that the optimal control angle

is given by the bilinear tangent law given by equation (19). The values of constants CI =

3.38* 10-5, C2=-3.68*10-2,  c3=-1.OO*1O-1,  and C4 =-2.87* 10-2 were obtained through

information on the initial costates.  Values are plotted at the segment endpoints.

(19)

The second curve comes from post-processing the output from the NLP and is plotted at

the segment centers. If the approximations for the velocity rate of change shown in
equation (12) are used, the control angle can also be calculated through the equation ~ =

tan- l(vY/vX). The two curves, one supplied through an indirect method and the other

through a direct method, very closely match.

The second example is an interplanetary transfer using a vsi propulsion system.

The trajectory shown is a 450 day Earth to Mercury transfer with 32 segments. Launch

date was chosen to be December 17, 1999. Trajectories with intermediate bodies have also

been calculated. The modeling of the gravity assists and supporting figures will be

contained in the full paper.

In summary, this paper discusses a technique for calculating optimal low-thrust

trajectories using a finite dimensional approximation to the continuous time problem, The

technique formulates a NLP where the control parameters are replaced with state rate
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information thereby reducing the parameter space of the resulting ITLP. The describd

method exhibhs  good convergence from a variety of initial starting solutions.
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Figure 5. Earth-Mercury Variable Specific Impulse Trajectory
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